Re-thinking Sensitivity of Model Parameter Values in Soil Moisture Assimilation Using the Evolutionary Data Assimilation

نویسندگان

  • Gift Dumedah
  • Jeffrey P. Walker
چکیده

The sensitivity of land surface model parameters is usually examined for one parameter at a time in response to changes in observation data and/or the model estimated output. This parameter independence approach assumes that there are limited interactions between model parameters a precondition which is highly unlikely for land surface models. Additionally, the model parameter values are widely assumed as time-invariant, particularly, in most data assimilation (DA) studies where model states are updated in response to changes in observation data. However, a demonstration of time-variant nature of physically representative model parameters values has not been thoroughly investigated in the DA literature. The sensitivity of model parameter values is important because their variability constitute an integral component of the overall accuracy of land surface model outputs for quantities such as soil moisture. This study assimilates the Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture data into the Joint UK Land Environment Simulator (JULES) to investigate the sensitivity of its model parameter values. The study demonstrates the sensitivity of JULES model parameter values in the estimation of soil moisture through the Evolutionary Data Assimilation (EDA) procedure. The EDA employs stochastic and adaptive properties of multi-objective evolutionary strategies to evaluate the continuous interaction between several model parameters. Analysis of these parameter sets across all assimilation time steps allows the sensitivity of model parameter values in response to changes in observation data to be determined. This approach is evaluated through comparison to conventional soil moisture assimilation for dual state-parameter estimation using the Ensemble Kalman Filter (EnKF).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation

Data assimilation (DA) methods are commonly used for finding a compromise between imperfect observations and uncertain model predictions. The estimation of model states and parameters has been widely recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distribution of model state and parameter values is closely linked to convergence, which in turn im...

متن کامل

Joint model state-parameter retrieval through the evolutionary data assimilation approach

Data assimilation (DA) methods have been widely used to improve model state estimation by merging model outputs with observations. Traditionally, studies have focused on updating model state variables but recent studies have augmented model parameters alongside model state variables to improve the estimation procedure. The updated model ensemble members represent a compromised estimation betwee...

متن کامل

A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature

[1] To overcome the difficulties in determining the optimal parameters needed for a radiative transfer model (RTM), which acts as the observational operator in a land data assimilation system, we have designed a dual-pass assimilation (DP-En4DVar) framework to optimize the model state (volumetric soil moisture content) and model parameters simultaneously using the gridded Advanced Microwave Sca...

متن کامل

A microwave land data assimilation system: Scheme and preliminary evaluation over China

[1] To make use of satellite microwave observations for estimating soil moisture, a dual‐pass land data assimilation system (DLDAS) is developed in this paper by incorporating a dual‐pass assimilation framework into the Community Land Model version 3 (CLM3). In the DLDAS, the model state (volumetric soil moisture content) and model parameters are jointly optimized using the gridded Advanced Mic...

متن کامل

Assimilating in situ soil moisture measurements into the DSSAT-CSM using a Kalman filter

With the ability to monitor soil moisture in time comes the opportunity to develop ways to incorporate these measurements into predictive models, without compromising or overriding the model physics. The importance of soil moisture to the growth of crops is well understood and because of this it is recognized as one of the more important parts of crop modeling programs. This research focused on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012